
TIC108 SERIES SILICON CONTROLLED RECTIFIERS

BOURNS®

- 5 A Continuous On-State Current
- 20 A Surge-Current
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 1 mA

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING			VALUE	UNIT
	TIC108D		400	
Panatitive pack off state voltage (and Nate 1)	TIC108M	V	600	v
Repetitive peak off-state voltage (see Note 1)	TIC108S	V _{DRM}	700	
	TIC108N		800	
	TIC108D		400	
Denstitive pack reverse veltage	TIC108M	V	600	v
Repetitive peak reverse voltage	TIC108S	V _{RRM}	700	
	TIC108N		800	
Continuous on-state current at (or below) 80°C case temperature (see Note 2)			5	A
Average on-state current (180° conduction angle) at (or below) 80°C case temperature			3.2	A
(see Note 3)			3.2	
Surge on-state current (see Note 4)			20	A
Peak positive gate current (pulse width \leq 300 μ s)			0.2	A
Peak gate power dissipation (pulse width \leq 300 μ s)			1.3	W
Average gate power dissipation (see Note 5)			0.3	W
Operating case temperature range			-40 to +110	°C
Storage temperature range			-40 to +125	°C
Lead temperature 1.6 mm from case for 10 seconds			230	°C

NOTES: 1. These values apply when the gate-cathode resistance R_{GK} = 1 k\Omega.

2. These values apply for continuous dc operation with resistive load. Above 80°C derate linearly to zero at 110°C.

3. This value may be applied continuously under single phase 50 Hz half-sine-wave operation with resistive load. Above 80°C derate linearly to zero at 110°C.

4. This value applies for one 50 Hz half-sine-wave when the device is operating at (or below) the rated value of peak reverse voltage and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

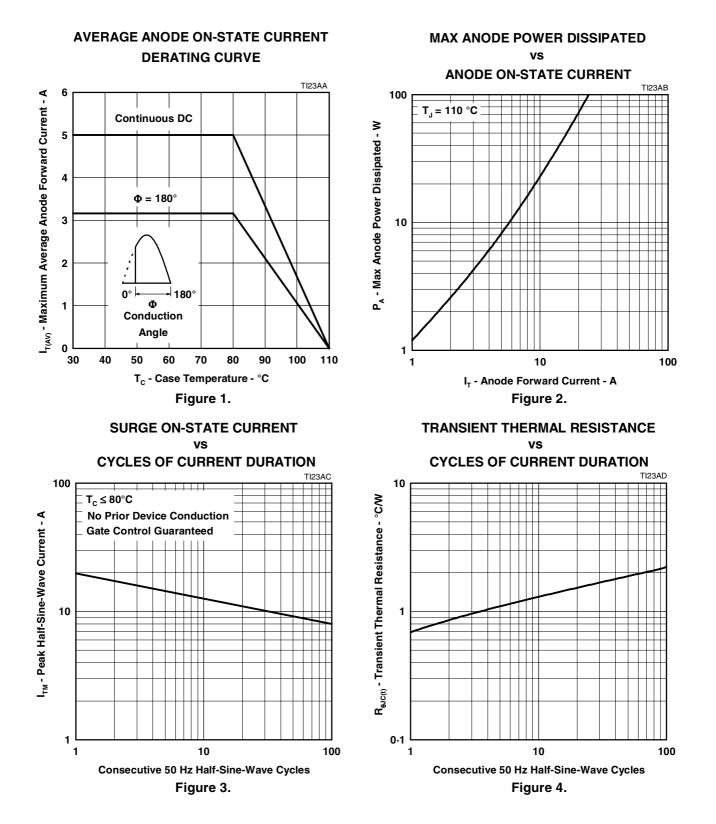
5. This value applies for a maximum averaging time of 20 ms.

PRODUCT INFORMATION

TIC108 SERIES SILICON CONTROLLED RECTIFIERS

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER		TEST CONDITIO	NS	MIN	ТҮР	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V_{D} = rated V_{DRM}	$R_{GK} = 1 \ k\Omega$	$T_{C} = 110^{\circ}C$			400	μA
I _{RRM}	Repetitive peak reverse current	V_{R} = rated V_{RRM}	$I_{G} = 0$	$T_{C} = 110^{\circ}C$			1	mA
I _{GT}	Gate trigger current	V _{AA} = 12 V	R _L = 100 Ω	t _{p(g)} ≥ 20 μs	0.2	0.5	1	mA
V _{GT}	Gate trigger voltage	V _{AA} = 12 V t _{p(g)} ≥ 20 μs	R _L = 100 Ω R _{GK} = 1 kΩ	$T_{C} = -40^{\circ}C$			1.2	
		V _{AA} = 12 V t _{p(g)} ≥ 20 μs	R _L = 100 Ω R _{GK} = 1 kΩ		0.4	0.6	1	V
		V _{AA} = 12 V t _{p(g)} ≥ 20 μs	R _L = 100 Ω R _{GK} = 1 kΩ	T _C = 110°C	0.2			
Ι _Η	Holding current	$V_{AA} = 12 V$ Initiating I _T = 20 mA	R _{GK} = 1 kΩ	T _C = - 40°C		3.5	15	mA
		$V_{AA} = 12 V$ Initiating I _T = 20 mA	R _{GK} = 1 kΩ			2	10	
V _T	On-state voltage	I _T = 5 A	(see Note 6)			1.3	1.7	V
dv/dt	Critical rate of rise of off-state voltage	$V_D = rated V_D$	$R_{GK} = 1 \ k\Omega$	T _C = 110°C		20		V/µs

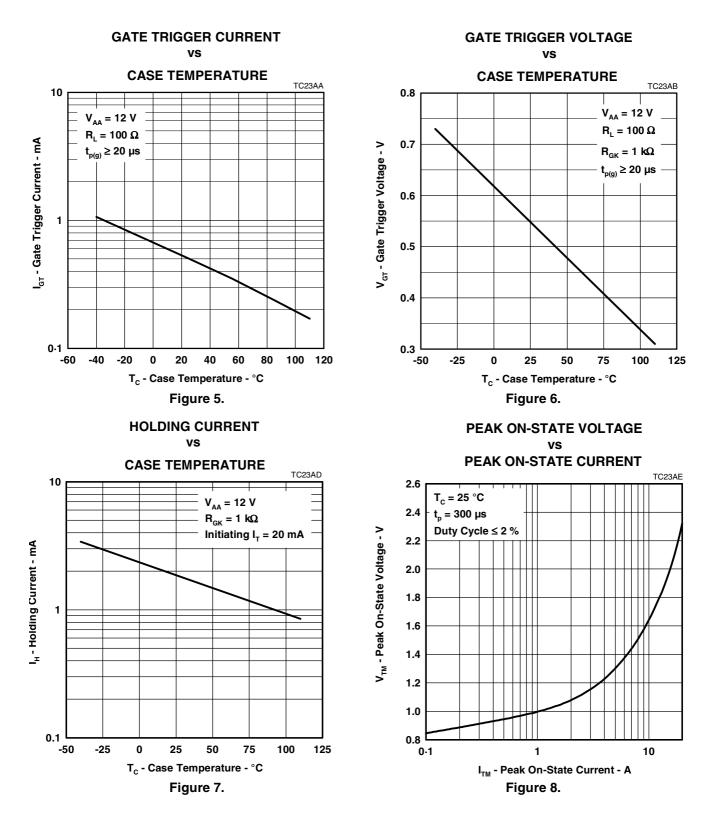

NOTE 6: This parameter must be measured using pulse techniques, $t_p = 300 \ \mu$ s, duty cycle $\le 2 \ \%$. Voltage sensing-contacts, separate from the current carrying contacts, are located within 3.2 mm from the device body.

thermal characteristics

PARAMETER		MIN	ТҮР	MAX	UNIT
R _{θJC}	Junction to case thermal resistance			3.5	°C/W
R _{θJA}	Junction to free air thermal resistance			62.5	°C/W

THERMAL INFORMATION

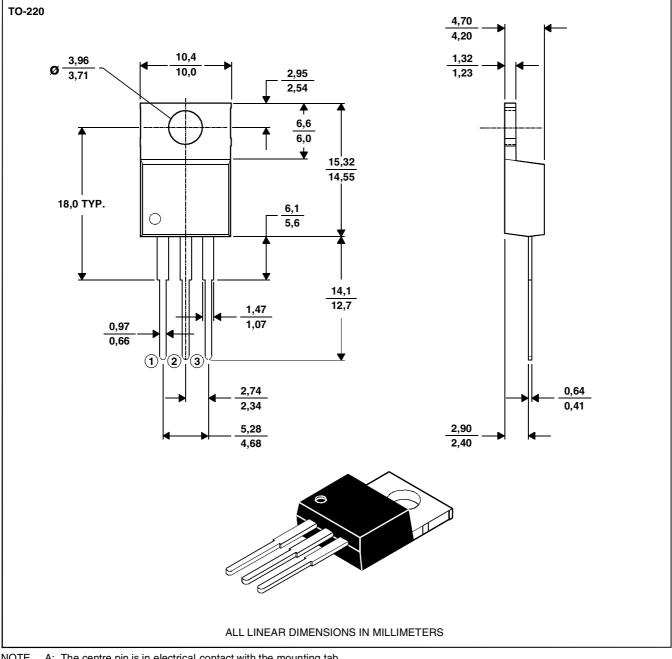
PRODUCT INFORMATION


APRIL 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

BOURNS®

TIC108 SERIES SILICON CONTROLLED RECTIFIERS

TYPICAL CHARACTERISTICS


PRODUCT INFORMATION

MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

A: The centre pin is in electrical contact with the mounting tab. NOTE

PRODUCT INFORMATION

APRIL 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.